
IMPROVING TRAFFIC MANAGEMENT EFFICIENCY THROUGH

REINFORCEMENT LEARNING-BASED TRAFFIC SIGNAL

CONTROL AND CITYWIDE TRANSIT SIMULATION

by

Toan V. Tran

Mina Sartipi
Professor
(Chair)

Yu Liang
Professor
(Committee Member)

Dalei Wu
Associate Professor
(Committee Member)

IMPROVING TRAFFIC MANAGEMENT EFFICIENCY THROUGH

REINFORCEMENT LEARNING-BASED TRAFFIC SIGNAL

CONTROL AND CITYWIDE TRANSIT SIMULATION

by

Toan V. Tran

A Thesis Submitted to the Faculty of the University of

Tennessee at Chattanooga in Partial

Fulfillment of the Requirements of the Degree of

Master of Science: Computer Science

The University of Tennessee at Chattanooga

Chattanooga, Tennessee

August 2023

ii

ABSTRACT

Traffic congestion reduces productivity and harms the environment. Enhancing traffic

signal control and public transportation are effective solutions. However, prior research has

limitations stemming from the absence of real-time reliable data. Recent computer vision

systems have made collecting traffic data easier. This thesis explores leveraging these data

sources to enhance existing traffic signal controls (TSCs) and citywide transit simulations.

For TSC, a comprehensive framework that facilitates rapid prototyping of reinforcement

learning (RL) and an automatic feature engineering method are proposed. Additionally,

RL techniques are implemented to a digital twin of Chattanooga smart corridor. Regarding

transit simulations, a toolkit for calibrating large-scale simulations and an efficient solution

for simulating changes in transit system settings are developed. Finally, we delve into a

fundamental question of optimization for training neural networks and demonstrate that a

novel approach using Neuroevolution outperforms Gradient Descent methods.

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Mina Sartipi, for her

unwavering support and guidance. I am also grateful to the UTC professors who offered

courses that have enhanced my knowledge in Computer Science. Additionally, I would like

to thank the SimCenter for providing computing resources that have been essential to my

research. Finally, I kindly thanks to the committee members – Dr. Dalei Wu, Dr. Yu Liang,

and Dr. Mina Sartipi for their valuable comments and suggestions.

iv

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER .

1 Introduction . 1

1.1 Traffic Signal Control . 2
1.2 Citywide transit simulation . 2
1.3 Thesis objectives . 3

I Reinforcement Learning for Traffic Signal Control . 4

2 TSLib: A Unified Traffic Signal Control Framework Using Deep Reinforcement Learning . . . 5

2.1 Brief Description of TSLib . 5
2.1.1 Interface . 6
2.1.2 Environment . 8
2.1.3 Controller . 8

2.2 Benchmarks . 10
2.2.1 Methods . 10
2.2.2 Experiments . 12

3 Pixel-based Traffic Signal Controls using Reinforcement Learning with World Models 17

3.1 Proposed Methodology – WorldLight . 19
3.1.1 WorldLight’s components . 19
3.1.2 Training WorldLight . 21

3.2 Experiments and Results . 21
3.2.1 Experiment setting . 21
3.2.2 Experiment 1: Overall performance . 21
3.2.3 Experiment 2: Effects of reward function . 22
3.2.4 Experiment 3: Effects of RL algorithms . 24

4 Optimizing MLK Traffic Controllers Using RL and Digital Twin 29

4.1 Proposed framework . 31
4.2 Demonstration . 32

5 Single Camera-enabled RL-based TSC System supporting Life-long Assessment 35

v

5.1 Proposed framework . 36
5.2 Demonstration . 38

5.2.1 Vehicle Detection System . 38
5.2.2 RL-based Traffic Signal Control . 39

II Citywide Public Transit Simulation . 41

6 SIMCal: A High-Performance Toolkit For Calibrating Traffic Simulation 42

6.1 Brief Description of SIMCal . 42
6.1.1 SIMCal’s framework . 42
6.1.2 Inputs . 44
6.1.3 Optimization . 45
6.1.4 Output and Visualization . 47

6.2 Experiments & Results . 47
6.2.1 Experiment setting . 47
6.2.2 Datasets . 47
6.2.3 Algorithm effects . 48
6.2.4 Population size effects . 48
6.2.5 Interval effects . 51
6.2.6 Traffic demand effects . 52
6.2.7 Network size effects . 53

7 BTE-Sim: Fast Simulation Environment For Public Transportation 56

7.1 Brief Description of BTE-Sim . 58
7.2 Experiments and Results . 58

7.2.1 Exp 1: BTE-Sim using different sources for the historical edge-speed database . . 58
7.2.2 Exp 2: BTE-Sim achieves competitive results compared to Transit-Gym 61
7.2.3 Exp 3: BTE-Sim improves the simulation time . 63
7.2.4 Exp 4: BTE-Sim simulates different dates . 63

III Neuroevolution for Training Neural Networks . 65

8 Neuroevolution for transportation applications . 66

8.1 Training neural networks . 66
8.2 Training by Gradient Descent . 67
8.3 Neuroevolution approaches . 67
8.4 Experiments for Traffic prediction . 70
8.5 Discussion . 75

9 Discussion . 76

REFERENCES . 78

VITA . 83

vi

LIST OF TABLES

2.1 Rules of SOTL . 10

6.1 Five-minute observed speed data format . 44

6.2 Detailed results of all experiments . 55

7.1 Simulation time of Transit-Gym and BTE-Sim for scenarios with different number of vehicles . . 63

8.1 Number of time series that methods achieve the best performance on the testing data 71

8.2 Average training time for each time series . 73

vii

LIST OF FIGURES

2.1 The class diagram of TSLib. To reuse code, we design inheritance relationships. 6

2.2 TSLib works in SUMO, a popular simulator in traffic engineering [1] 7

2.3 TSLib works in CityFlow, a high-computing-performance simulator [2] 8

2.4 An example of outgoing and allowed lanes of a phase that allows two movements as green arrows 10

2.5 An example of CDRL’s state representation . 11

2.6 IntelliLight’s Q network . 12

2.7 3DQN of TLCC . 13

2.8 An real-world intersection and performance of methods on different vehicle types in Chattanooga,

TN, USA . 14

2.9 Performance on five intersections and effects of methods on different vehicle’s route lengths . . . 15

2.10 Performance on downtown intersections in Monaco . 16

3.1 Pixel-based reinforcement learning for TSC . 18

3.2 Feature-based reinforcement learning for TSC . 18

3.3 WorldLight’s architecture . 19

3.4 a raw traffic-state image; images constructed by the autoencoder with the latent vector size of

32, 64, and 128, respectively . 25

3.5 Performance of WorldLight and previous methods . 26

3.6 Performance of the state representation methods when using the same reward functions. For the

negative total reward figures (i.e., r1, r2, and r4), the lower value is better. On the other hand,

for the figure about r3, the higher value is better. 27

3.7 Performance of WorldLight when using different RL algorithms for the controller 28

4.1 Eleven selected intersections along the testbed . 30

4.2 An example of one intersection on the MLK Smart Corridor. The bottom right image is the

actual picture from one intersection on the corridor. The top left box lists the advanced sensor

technologies at each intersection. 30

4.3 Architecture of the proposed framework . 32

4.4 Performance of Actuated and RL-based controls . 33

viii

4.5 Trajectories of vehicles at Houston&MLK when using Actuated (left) and RL (right) 34

5.1 The architecture of the proposed system. The green components are conducted in real time while

the blue ones come with one-minute delay. 36

5.2 Illustration of the operation of our vehicle detection system which processes 360-camera frames

to lane-level features . 37

5.3 Comparison of our RL-based TSC and the actuated control (which is currently running in the

real-world testbed) at the intersection of Market & MLK from 4pm to 5pm 40

6.1 SIMCal’s framework . 43

6.2 Flowchart of the optimization process . 46

6.3 SIMCal’s performance for calibrating the MLK corridor with different algorithms. The baseline

is the simulation using default parameters . 49

6.4 MAPE over iterations in terms of different population sizes . 50

6.5 Visualization of parameter sets during 50 iterations by using PCA 50

6.6 MAPE in terms of different intervals . 51

6.7 PCA-space visualization of parameter sets for different intervals 52

6.8 Traffic demands per hour on May 11, 2021 at the MLK corridor 53

6.9 Running time to calibrate the Chattanooga simulation . 54

7.1 Components of a transit simulation . 57

7.2 BTE replacing the background traffic by a historical edge-speed database 59

7.3 Bus movement with background traffic . 59

7.4 Bus movement without background traffic . 59

7.5 BTE-Sim: Transit simulation without background traffic . 60

7.6 Comparing background traffic sources for BTE-Sim . 60

7.7 Comparing Transit-gym and BTE-Sim on absolute error of Time of Arrival 61

7.8 Analysis examples for the transit system of Chattanooga on January 11, 2022, using BTE-Sim . 62

7.9 BTE-Sim over different dates . 64

8.1 Flow chart of training neural network by NE . 68

8.2 Average MSE of 50 time series during training . 71

8.3 MSE on the testing data of 50 selected time series . 72

8.4 Testing loss curves of Sensor 2 and 11 over iterations . 72

8.5 PGPE’s performance with various population sizes . 73

8.6 PGPE’s performance with various learning rates . 74

8.7 The loss surface of Sensor 04 . 75

ix

8.8 The loss surface of Sensor 39 . 75

8.9 The contour-line visualization for the loss surface of Sensor 04, in which NE outperforms GD . . 75

8.10 The contour-line visualization for Sensor 39’s loss surface, where GD is better than NE 75

x

CHAPTER 1

Introduction

Traffic congestion is a major problem in many cities around the world. Despite

massive investments in infrastructure, the increase in mobility demand within metropolitan

areas has outstripped the capacity of the transportation network. This has led to a number of

negative consequences, including loss of productivity, pollution and environmental damage,

and poor health due to stress. According to the Urban Mobility report, traffic congestion

in the United States caused 4.3 billion hours of delay, wasted 101 billion gallons of fuel, and

damaged the economy by $101 billion in 2021 [3]. These costs are likely to increase in the

future as traffic congestion continues to worsen. Two of the most simple but effective ways to

reduce traffic congestion are to improve traffic signal control (TSC) and public transportation

system.

However, the existing traffic signal control systems which are running in the real world

are quite inefficient. Most of them follow static plans or limitedly adjust to data from loop

detectors. On the public transportation side, due to a lack of citywide traffic data, there

are not many studies that develop reliable simulations, which are an essential component

of designing, planning, and optimizing routes research. Fortunately, the amount and speed

at which traffic data is collected has increased significantly due to the widespread use of

new technologies such as cameras, Internet of Things (IoT) devices, and vehicular networks.

These technologies have made it easier to access real-time and reliable data [4]. That has

created an emerging question – how to exploit these data to improve the existing TSCs and

public transportation simulations.

1

1.1 Traffic Signal Control

About traffic signal control, the application of reinforcement learning to this field has

been an area of active research in recent years. Reinforcement learning is a subfield of artifi-

cial intelligence that involves training agents to learn how to take actions in an environment

to maximize a reward signal. One of the earliest studies in this area was conducted by [5],

who developed a deep Q-learning algorithm for controlling a single traffic junction. The al-

gorithm was able to learn optimal signal timings through trial and error, and outperformed

fixed-time control, especially under varying traffic conditions. However, the algorithm was

limited to a single junction and could not account for interactions with neighboring junctions.

Since then, there have been several studies that have focused on developing reinforcement

learning algorithms for coordinated traffic signal control across multiple intersections. One

approach has been to use decentralized reinforcement learning, where each junction learns

independently based on its local observations [6]. Another approach has been to use cen-

tralized reinforcement learning, where a central controller coordinates the signal timings

of all junctions [7]. Overall, reinforcement learning-based traffic signal control has shown

promising results in simple simulation settings, but there is still much work to be done to

demonstrate its effectiveness in real-world settings.

1.2 Citywide transit simulation

Regarding to public transportation simulation which is a citywide problem, [8] and [9]

proposed a method for creating a simulated city transit system based on various data sources

like open street map, origin destination matrix, and general transit feed specification to deal

with the public transportation simulation problem faced by the entire city. However, there is

still a need for more research into calibrating city-level simulations, especially for large and

complex simulations, in order to obtain accurate results [10]. Additionally, there is still room

for more research into finding an efficient way to simulate diverse transit system settings.

2

1.3 Thesis objectives

This thesis investigates various problems in reinforcement learning for traffic signal

control and public transit simulation. For TSC, we develop a unified framework named

TSLib which is a Python framework for fast prototyping traffic signal control systems. It

is designed to be modular and reusable, so that researchers can quickly implement and

evaluate new ideas in TSC. TSLib includes a comprehensive implementation of some well-

known TSC algorithms, as well as performance measurements. Subsequently, we investigate

the feature engineering procedure of RL-based TSCs and propose a novel method named

WorldLight using world models. WorldLight outperforms the previous methods in certain

cases. Additionally, RL-based TSCs are implemented on a digital twin of the smart cor-

ridor at Chattanooga, TN, USA. Regarding public transit simulation, SIMCal which is a

high-performance toolkit for calibrating traffic simulation is developed. It is designed to

help researchers and practitioners to quickly and easily calibrate traffic simulations. SIMCal

supports a variety of calibration methods, such as genetic algorithm, particle swarm opti-

mization and firefly algorithm. Furthermore, we address a novel simulation problem – how

to efficiently conduct a new simulation where only the transit system’s setting (e.g., number

of buses) changes while the rest of the transportation system remains stable. Finally, we

delve into the fundamental question of optimization for neural network training and propose

a novel approach using neuroevolution, which surpasses the widely popular Gradient Descent

method.

3

Part I

Reinforcement Learning for Traffic

Signal Control

4

CHAPTER 2

TSLib: A Unified Traffic Signal Control Framework Using Deep Reinforcement Learning

Though the extensive efforts on proposing RL-based TSC methods as mentioned in

Chapter 1, previous research on traffic signal control has not produced scalable, flexible,

and easy-to-use frameworks. Existing frameworks are typically designed for a specific traffic

network, traffic light setting, TSC method, and simulator, making them difficult to replicate

and apply to new contexts. Additionally, there are still challenges with TSC methods, such as

benchmarking, learning efficiency, safety, and transferring from simulation to reality. These

challenges need to be addressed in order to develop TSC methods that are effective, efficient,

and safe.

We develop TSLib [11] which is a modular framework for traffic signal control prob-

lems. It is designed to be flexible and extensible, so it can be used in different simulators and

real-world environments. The framework provides a collection of well-known TSCs and an

intuitive interface, which makes it easy for researchers to implement new DRL-based TSC

algorithms. TSLib also supports various settings to facilitate benchmarking. To demonstrate

the strength of TSLib, the authors include many widely adopted and state-of-the-art TSC

methods within the framework and conduct a benchmarking comparison on various criteria.

2.1 Brief Description of TSLib

Figure 2.1 shows the design of TSLib. The framework is divided into three compo-

nents: the interface, the environment, and the controller. This separation of modules makes

it easy to scale up the framework. The following sections describe each component in more

5

Figure 2.1 The class diagram of TSLib. To reuse code, we design inheritance relationships.

detail.

2.1.1 Interface

Users interact with TSLib through the interface class. This class provides a simple

interface to configure simulation. There are two main functions including “train” and “run”.

The function named “run” is used for inference stage or testing trained models. The below

code is a python-interface example of applying available TSCs using our source:

1 from tslib import TSLib

2

3 config = {

4 "net": "atlanta/road.net.xml",

5 "veh_type": "type.xml",

6 "route": "atlanta/flow.route.xml",

6

7 "traffic_lights": [

8 {"node_id": "A", "method": "FixedTime"},

9 {"node_id": "B", "method": "IntelliLight", "yellow_duration": 3, "cycle_control": 5,

"model": "model/atlanta/IntelliLight.h5"},

10],

11 "log_folder": "log/atlanta",

12 "simulator" : "SUMO", # TSlib supports both SUMO and CityFlow

13 "gui": False ,

14 }

15

16 sim = TSLib(config)

17 sim.run() # to run simulation with trained models

18 # sim.train() # to train and save models

Users must provide a JSON configuration file. The configuration file contains paths

to files that define the traffic road structure, vehicle characteristics (e.g., maximum speed,

length of cars), traffic flows, an array of traffic lights that determines which methods are

applied to intersection nodes, an address for logs, and an option to enable the GUI. The

example code shows how to do this. Currently, our source code supports both SUMO and

CityFlow, as shown in Figures 2.2 and 2.3.

Figure 2.2 TSLib works in SUMO, a popular simulator in traffic engineering [1]

To train a model for DRL-based traffic signal controllers (TSCs), the configuration

is the same as the one used to run a simulation. This is illustrated in lines 17 and 18 of the

above example code. In addition, TSLib allows users to visualize metrics during training

using Tensorboard. This can help users track the convergence of their TSC methods.

7

Figure 2.3 TSLib works in CityFlow, a high-computing-performance simulator [2]

2.1.2 Environment

The environment component in Figure 2.1 contains information about vehicles and

traffic lights. This component is the only one that depends on the simulator being used. For

example, the APIs for getting information about vehicles are different for different simulators.

To support new environments, we need to customize the functions of this component to

correspond to the new platform. This includes how to get information about vehicles (e.g.,

using the simulator’s API, vehicular networks, or cameras). The most important class in

this component is the “TrafficLight” class. This class contains a comprehensive state that

includes information about the current vehicles in the traffic light’s zone and the current

phase setting.

2.1.3 Controller

The core of our library is the controller component. This component contains a class

named RLAgent that includes all the necessary functions for a traffic signal controller (TSC)

using reinforcement learning (DRL). To implement a new DRL-based TSC, users can inherit

this class and save a lot of work, instead of building it from scratch. For example, we

provide configurable RL modules that help users easily implement new ideas for DRL-based

TSCs. Basically, the two classes “RLModule” and “RLAgent” serve as a small version of a

reinforcement learning library.

8

Users can also implement their own functions for the state, such as implementing the

function named “processState” that inputs the comprehensive state from the “TrafficLight”

class. In particular, users can reuse the existing code for state and reward designs of available

TSCs.

In other words, the controller component is the heart of our library. It provides a

lot of functionality that users can use to implement new DRL-based TSCs. Users can save

a lot of time and effort by inheriting the “RLAgent” class and using the configurable RL

modules. Users can also implement their own functions for the state and reward designs.

For example, the below example is used to build a new TSC using Deep Q Network (DQN):

1 from rlmodules import RLModule

2 from RLAgent import RLAgent

3 from CDRL import CDRL

4 from VFB import VFB

5

6 class New_TSC(RLAgent):

7 def __init__(self , config , road_structure , phase_config):

8 RLAgent.__init__(self , config , road_structure)

9 self.incoming_lanes = getIncomingLanes(road_structure)

10 self.num_phases = getNumOfPhases(phase_config)

11

12 def buildModel(self):

13 return RLModule.buildModel(type='DQN',input_shape =(len(self.incoming_lanes) ,),

action_space=self.num_phases)

14

15 def processState(self , state):

16 return state['queue_length ']

17

18 def computeReward(self , state , historical_data):

19 return CDRL.computeReward(state , historical_data)

This example shows how to use the TSLib library to create a new traffic signal

controller (TSC). The example inherits the “RLAgent” class, uses the “RLModule” module

to build a new model, and defines the state as the queue length. The example also reuses

the reward function from another method called Coordinated Deep Reinforcement Learners

(CDRL) [5]. We believe that TSLib can significantly reduce the workload of implementing

9

outgoing lane

allowed

lane

allowed

lane

Figure 2.4 An example of outgoing and allowed lanes of a phase that allows two movements
as green arrows

new TSCs by providing these features.

2.2 Benchmarks

2.2.1 Methods

We consider the following methods in our benchmarks:

• Fixed Time control (FT): FT is a static control which follows pre-defined

fixed-time-phase configurations.

• Self-Organizing Traffic Light control (SOTL) [12]: SOTL is an adaptive

method that uses only the volume of lanes as the input.

• Max-Pressure control (MP) [13]: The MaxPressure algorithm calculates the

pressure of all phases in a traffic signal system. At each cycle, the phase with the highest

pressure is activated. The pressure of a phase is calculated by the difference between the

number of vehicles on allowed lanes and the number of vehicles on outgoing lanes.

Table 2.1 Rules of SOTL

Request by Request by
Action

green-phase lanes red-phase lanes

Yes
Yes

Keep the current phase
No

No
Yes Change to the next phase
No Keep the current phase

• Coordinated Deep Reinforcement Learners (CDRL) for traffic light con-

10

trol [5]: CDRL is a RL-based method using deep Q learning. It represents the state as an

image which describes comprehensively the position of vehicles, illustrated in Figure 2.5. The

action of CDRL is a phase index which will be executed in the next interval. The reward

is a linear function which combines multiple objectives – minimizing signal changes, delay,

and waiting time.

(a) Traffic situation



0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0.2 0.8 0 1 1
0 0 1 0.8 0.2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0


(b) State representation in 8 x 8 matrix

Figure 2.5 An example of CDRL’s state representation

• Traffic light control using deep policy-gradient and Value-Function Based

reinforcement learning (VFB) for traffic light control [14]: VFB has the same state

representation and action design to CDRL’s. The differences are the reinforcement learning

method and reward function. VFB implements value-function methods and considers the

total cumulative delay as its reward.

• IntelliLight [6]: The authors designed the action as switching to the next phase

or keeping the current phase. Moreover, IntelliLight implements a phase-gate architecture

which inputs both extracted features and vehicle-position images.

• A deep reinforcement learning network for Traffic Light Cycle Control

(TLCC) [15]: TLCC applies an action to adjust the green time of phases. It implements

Double dueling Deep Q-network, presented in Figure 2.7. The state representation is an

image that includes both vehicle positions and speeds. The reward is the total waiting time

of all vehicles.

11

Figure 2.6 IntelliLight’s Q network

2.2.2 Experiments

We conducted our experiments using the SUMO simulator [1], which is a popular

tool for this type of research. To ensure a fair comparison, we used an identical parameter

setting and same experience replay strategy for all of the DRL-based methods.

TSLib offers a variety of metrics. These metrics are used to measure the performance

of individual lanes, intersections, and vehicles. For lanes and intersections, TSLib measures

the following characteristics:

• Queue length: The number of vehicles waiting to enter the lane or intersection.

• Lane speed: The average speed of vehicles traveling in the lane.

• Lane waiting time: The average amount of time vehicles spend waiting to enter the

lane.

For vehicles, TSLib measures the following features:

12

Figure 2.7 3DQN of TLCC

• Speed: The average speed of the vehicle.

• Travel/waiting time: The total amount of time the vehicle spends traveling or waiting.

• Fuel consumption: The amount of fuel used by the vehicle.

• CO/CO2 emission: The amount of CO/CO2 emitted by the vehicle.

By measuring these metrics, TSLib can provide a comprehensive assessment of the

performance of transportation systems. This information can be used to identify areas where

improvements can be made to improve the efficiency and sustainability of transportation

systems.

1) Isolated intersection . We simulate a single real-world intersection in SUMO.

The data for the intersection was collected from cameras at the intersection of Martin Luther

King Boulevard and Magnolia Street in Chattanooga, TN, USA (illustrated in Figure 2.8)

during the peak hour from 4pm to 5pm on February 13, 2021.

The seven methods are compared on their performance for different vehicle types.

Figure 2.8 provides the performance comparison of all the methods. Generally, the DRL-

based methods (IntelliLight, VFB, and CDRL) outperform the heuristic methods after 50

episodes of training. CDRL performs the best on all metrics. TLCC does not perform as

13

Figure 2.8 An real-world intersection and performance of methods on different vehicle types
in Chattanooga, TN, USA

well, possibly because it has not converged yet. The original paper [15] showed that TLCC

converged after 600 episodes, but in this study it is only trained for 50 episodes for a fair

comparison. For a one-hour workload, CDRL saves a total of 5.58 hours, an average of 15.3

seconds per driver, and reduces 48.3 kg of CO2 emissions compared to FixTime.

2) Corridor . The data of this experiment was collected on five intersections on

Peachtree Street in Atlanta, GA, on November 8, 2006 by [16], [17]. The data was collected

by eight cameras between 12:45 p.m. and 1:00 p.m. and again between 4:00 p.m. and

4:15 p.m. The intersections have different traffic volumes, and intersection B is a three-way

intersection.

The average waiting time at each intersection is shown in Figure 2.9(c). Similar to

the previous experiment, TLCC does not seem to have converged after 50 episodes. Other

DRL-based methods are still improving. In this workload, MaxPressure has competitive

performance compared to other DRL-based methods. The comprehensive data recorded

by TSLib helps us understand the effects of vehicle characteristics such as vehicle type and

vehicle route. Figure 2.9(d) shows the CO2 emissions of vehicles with different route lengths.

14

Figure 2.9 Performance on five intersections and effects of methods on different vehicle’s
route lengths

For vehicles with routes that include one to four intersections, CDRL is the best method for

CO2 emissions. TLCC causes vehicles with a route length of 5 intersections to emit around

2kg of CO2, while the amount of CO2 emissions caused by other methods is less than 0.5kg.

Furthermore, for vehicles with routes that include more than 5 intersections, TLCC has the

highest CO2 emissions.

3) Downtown intersections . In this experiment, TSLib is used to control traffic

flows in a downtown area in Monaco. The dataset used for this experiment was collected

by [18] and included activity-based mobility data for one hour. The test site had a variety of

traffic network characteristics that TSLib had to handle, such as different numbers of lanes,

one-way roads, two-way roads, and different phase settings of traffic lights. TSLib is able to

handle these different traffic network characteristics. This demonstrates the versatility and

flexibility of TSLib.

The results of traffic signal control methods on the test site in Monaco are presented

in Figure 2.10. Deep reinforcement learning (DRL)-based methods outperform heuristic

15

Figure 2.10 Performance on downtown intersections in Monaco

methods. SOTL and MaxPressure can not handle many different phase settings in a large

network. Among DRL methods, CDRL is the best, saving around 30 seconds per driver

compared to FixedTime. TLCC is the most inefficient method in previous experiments,

but it performs better than IntelliLight, SOTL, and MaxPressure in the city-wide network.

IntelliLight is the least effective method in a large network, but it performs well in a small

network. In other words, DRL-based methods are more effective than heuristic methods at

controlling traffic in a large network. CDRL is the best DRL-based method, and TLCC is

the most efficient heuristic method.

16

CHAPTER 3

Pixel-based Traffic Signal Controls using Reinforcement Learning with World Models

In addition to Chapters 1 and 2, reinforcement learning for traffic signal control

can be categorized into two types: pixel-based and feature-based, illustrated in Figures 3.1

and 3.2 respectively. Pixel-based methods [5, 15] use images of traffic states as input to the

RL controller, while feature-based methods [7,19,20] extract features from traffic states and

input these features instead of the image itself.

More specifically, the first studies that have applied RL for TSC were pixel-based

methods, but feature-based methods have become more popular in recent years because they

are more efficient and can be used to control larger traffic networks. Moreover, the high-

dimensional images are difficult for RL to learn during the trial-and-error process. Therefore,

the pixel-based TSCs usually outperform both the feature-based methods [11, 21]. Despite

good performance, the feature-based TSCs have some limitations. First, feature-based state

representation lacks comprehensive information. Second, feature designing requires manual

work. Finally, each existing feature design is for a particular reward function. For example,

the authors [19] used different methods to study queue lengths, and they discovered that the

number of vehicles in each lane was the most important factor affecting queue length.

We proposes a new pixel-based traffic state classification method called WorldLight.

WorldLight differs from previous methods in that it does not only directly learn from traffic-

state images. Instead, it uses a world model [22,23] to learn a representation of the images.

This representation is more comprehensive than previous representations, as it includes in-

formation on both the current and future traffic states. WorldLight can achieve competitive

performance with feature-based TSC methods, and even outperforms them in some scenarios.

17

Environment

Reinforcement
Learning Controller

action a

CNN
layers

full-connected
layers

Figure 3.1 Pixel-based reinforcement learning for TSC

Reinforcement
Learning Controller

action a

full-connected layers

Environment

Feature
extraction

Feature vector

Figure 3.2 Feature-based reinforcement learning for TSC

18

AutoEncoder (AE)

World
Model

Recurrent Mixture Density
Network (RMDN)

RNN Mixture Density

latent vector z

Distribution
output

Reinforcement Learning
Controller (C)

Full connected layers

hidden state h

action a

Encoder Decoder

Environment

WorldLight

state

vector s

Figure 3.3 WorldLight’s architecture

3.1 Proposed Methodology – WorldLight

3.1.1 WorldLight’s components

WordLight is a pixel-based method for traffic signal control. It takes an image as

input, which represents the current traffic status. WordLight then extracts features from

the image using a world model, which consists of two main components: an AutoEncoder

(AE) and a Recurrent Mixture Density Network (RMDN). The AE is used to represent the

image as a latent vector z, which has a much smaller dimension than the original image.

The RMDN then uses the latent vector z to predict the next latent vector zt+1 at time

t+ 1. This process is repeated to generate a sequence of latent vectors, which can be used to

predict future traffic conditions. More precisely, the RMDN is a model that uses RNN layers

to model the time series of traffic data and a Mixture Density Network to understand the

uncertainty of traffic. The world model creates a state vector that combines the latent vector

z and the hidden state h. This state vector includes information about the current traffic

status and the traffic modeling/prediction. The RL controller inputs the state vector and

returns an optimal action. The RL controller implements two full connected layers because

the raw image is extracted to features by the world model.

19

• AutoEncoder . We implement a variational autoencoder that can compress high-

dimensional traffic-state images into smaller latent vectors while preserving most of the

information in the original images. Figure 3.4 shows how our autoencoder works. The

reconstructed images are more accurate as the size of the latent vector increases. However,

larger latent vectors can make it more difficult for the reinforcement learning (RL) controller

to learn how to control the traffic.

• Recurrent Mixture Density Network . The Recurrent Mixture Density Net-

work (RMDDN) is a model that can predict future traffic conditions, i.e., the modeling task

P (zt+1|at, zt, ht). It uses a Recurrent Neural Network (RNN) to understand time series pat-

terns and a Mixture Density Network (MDN) to model traffic uncertainty. The RNN uses

LSTM layers to learn the temporal dependencies in the traffic data, while the MDN outputs

a set of Gaussian distributions for each element of the predicted traffic state. This allows the

model to capture the uncertainty in the traffic data. The number of units in the last layer

of RMDN is equal to the number of elements in the traffic state multiplied by the number of

Gaussian distributions. RMDN’s probability density function p(x) is shown in Equation 3.1.

p(x) =
K∑
k

πkN (x|µk, σ
2) (3.1)

From the probability density function, we can train RMDN by minizing the log likelihood

loss function L(w).

L(w) = −
|z|∑
i=0

ln

(
K∑
k=1

πk(w)N
(
zi|µk(w), σ2

k(w)
))

(3.2)

• Reinforcement Learning Controller . Because the input of the controller is

a 1D vector, the controller implements a standard full-connected neural network including

2 hidden layers with 64 units. The neural network is trained using the Proximal Policy

Optimization (PPO) algorithm [24]. The controller takes a vector of traffic state information

as input and outputs a phase index. The PPO algorithm is a policy gradient method for

reinforcement learning that learns how to take actions in an environment in order to maximize

20

a reward. In this case, the agent is learning how to choose a phase which will be executed

within interval τ to reduce the total negative queue lengths of incoming lanes.

3.1.2 Training WorldLight

The training process for WorldLight is summarized as the follows:

1. Collect roll outs from a random policy/actuated control.

2. Train the AutoEncoder.

3. Train the Recurrent Mixture Density Network to model P (zt+1|at, zt, ht).

4. Train the Controller via a trial-and-error reinforcement learning process.

3.2 Experiments and Results

3.2.1 Experiment setting

We use the SUMO traffic simulator to simulate a real-world intersection in Chat-

tanooga, TN, USA. The traffic demand for this intersection is obtained from a smart corri-

dor [25] that continually captures traffic data such as the number of vehicles, arrival time of

each vehicle, vehicle movement vehicle class, and vehicle length. By using this dataset, we

are able to create a realistic simulation of the intersection.

We consider various of baselines including: Actuated Control which is running in the

world; CNN-L which is a traditional pixel-based RL method [5]; MPLight [7] and LIT [19]

which are feature-based RL methods.

3.2.2 Experiment 1: Overall performance

• Setting . We conduct an experiment on a single intersection during the peak hour

of 4pm to 5pm. The data was collected from the MLK Smart Corridor, so our simulation

21

accurately represents the traffic flow distribution. Each method is trained using 250 episodes.

• Result . Figure 3.5 shows the overall performance of each method used to con-

trol traffic flow. In general, all reinforcement learning (RL)-based methods outperform the

actuated control method. Feature-based RL methods (LIT and MPLight) outperform the

traditional pixel-based RL method (CNN-L). WorldLight is a pixel-based method, but it is

better than the feature-based methods by using world models. Figure 3.5a shows the total

queue length during the training process. WorldLight and CNN-L converge faster than LIT

and MPLight. This is likely due to the different reinforcement learning algorithms used.

WorldLight and CNN-L use proximal policy optimization (PPO), while LIT and MPLight

use deep Q learning (DQN). Figures 3.5b, 3.5c, and 3.5d show the average travel time, queue

length, and fuel consumption in the testing simulation. WorldLight is slightly better LIT

and provides more stable performance across vehicles. Actuated is also stable because it

is a rule-based strategy, while CNN-L can cause long delays for some vehicles. In conclu-

sion, WorldLight is the best-performing RL-based method in this study. It outperform the

other methods in terms of convergence speed, average travel time, queue length, and fuel

consumption.

3.2.3 Experiment 2: Effects of reward function

• Setting . In this experiment, we investigate performance of state representations

of methods with different reward functions. The simulation setting remains the same as the

one in Experiment 1 and each model is trained for 250 episodes. We considered four reward

functions: one lane-based, one movement-based, and two vehicle-based. r1 (Equation 3.3)

and r2 (Equation 3.4) are vehicle-based reward functions that consider waiting time and

average speed, respectively.

r1 = −
∑

v∈V (t)

w(v), (3.3)

22

r2 =
∑

v∈V (t)

s(v)

|V (t)|
, (3.4)

where V (t) is the set of the vehicles which are in the intersection area at time t; w(v) and

s(v) are the waiting time and the speed of vehicle v.

Subsequently, r3 is a lane-based reward function considering queue lengths.

r3 = −
∑
l∈Lin

Q(l), (3.5)

where Lin is a set of in-coming lanes of the intersection; Q(l) is the queue length – number

of waiting vehicles of lane l.

Finally, the movement-based reward function r4 focuses on pressure.

r4 = −
∑

mi∈M

pmi
, (3.6)

where M is the set of movements. There are usually 12 movements for a regular 4-leg

intersection.

• Result . Figure 6 shows the reward values of different methods. Feature-based

methods outperform traditional pixel-based methods for all reward functions. This trend

is consistent to Experiment 1 and previous studies [26]. However, our method with world

models has narrowed the gap between feature-based and pixel-based strategies. WorldLight

performed best for r3 (queue length) and r4 (pressure), while LIT was better than WorldLight

for r1 (waiting time) and r2 (speed). This experiment shows that there is no single optimal

state representation that works for all reward functions. This finding is consistent with

previous research. Therefore, designing state representation is a critical task that depends

on the objective (i.e., reward function).

23

3.2.4 Experiment 3: Effects of RL algorithms

• Setting . In this experiment, we studied how WorldLight performs when using

different reinforcement learning (RL) algorithms. The simulation settings are the same as

in previous experiments. We investigated three common RL algorithms: Proximal Policy

Optimization (PPO) [24], Advantage Actor Critic (A2C) [27], and Deep Q Learning (DQN)

[28].

• Result . Figure 3.7 shows how well WorldLight performs using different reinforce-

ment learning (RL) algorithms. A2C is the fastest training method, converging after around

20 episodes. PPO and DQN require 50 and 80 episodes, respectively. In the testing phase,

PPO outperforms A2C and DQN. For example, PPO reduces the average travel time of

vehicles by 0.9% and 2.3% compared to A2C and DQN, respectively. Additionally, PPO

increases the average speed by 0.6% and 1.9% compared to A2C and DQN. This experiment

demonstrates that policy optimization methods (i.e., PPO and A2C) are better than the

Q-learning method for WorldLight.

24

(a) Raw traffic-state image (b) 32-unit latent vector

(c) 64-unit latent vector (d) 128-unit latent vector

Figure 3.4 a raw traffic-state image; images constructed by the autoencoder with the latent
vector size of 32, 64, and 128, respectively

25

Figure 3.5 Performance of WorldLight and previous methods

26

Figure 3.6 Performance of the state representation methods when using the same reward
functions. For the negative total reward figures (i.e., r1, r2, and r4), the lower value
is better. On the other hand, for the figure about r3, the higher value is better.

27

Figure 3.7 Performance of WorldLight when using different RL algorithms for the controller

28

CHAPTER 4

Optimizing MLK Traffic Controllers Using RL and Digital Twin

Despite of many previous studies investigating fundamentals of reinforcement learning

for traffic signal control as mentioned in previous chapters, these studies were conducted

using simulations that are not perfect representations of reality including the traffic volumes,

driving behaviors, and implementation of the baseline algorithm.

Traffic volumes: Existing research on traffic control algorithms has assumed a fixed

percentage of turning ratios among all approaching vehicles, such as 10% turning left, 60%

going straight, and 30% turning right [29]. Additionally, most experiments have only guar-

anteed the correct setting of the number of vehicles, and assumed that vehicles approach

intersections uniformly. However, in reality, the distribution of vehicles may not be uniform,

as it is determined by adjacent intersections. This means that existing research may not

accurately represent the workload distribution, which is critical for evaluating any control

algorithm.

Driving behaviors: Another issue with existing research is that it lacks calibration

for driving behaviors. This means that the algorithms may not be able to accurately predict

how drivers will behave in different situations. For example, some drivers may be more

aggressive than others, or they may be more likely to make certain types of turns.

Implementation of the baseline algorithm: Finally, many works have assumed

the standard four-phase design for traffic lights and selected default parameter values. How-

ever, in the real world, traffic lights are often designed with different phases and parameters

for different time slots of the day. This means that the results of existing research may not

be applicable to real-world traffic lights.

29

Figure 4.1 Eleven selected intersections along the testbed

Figure 4.2 An example of one intersection on the MLK Smart Corridor. The bottom right
image is the actual picture from one intersection on the corridor. The top left box
lists the advanced sensor technologies at each intersection.

30

4.1 Proposed framework

This study proposes a framework [30] for optimizing traffic controllers in Chattanooga,

Tennessee. The framework uses a smart corridor, illustrated in Figures 4.1, 4.2, which is

equipped with sensors, wireless communications technologies, and edge computing to collect

high-quality data. This data is used to develop a reliable digital twin that addresses the

issues of workload volume and distribution by advanced tracking vehicle system, driving

behavior by careful calibration, and baseline implementation by Signal Phasing and Timing

(SPaT) data.

A digital twin model of a corridor is created using real-time data on traffic volume,

turn movement counts, and SPaT messages. This model is used to develop an adaptive

signal timing plan that is optimized for fuel consumption. The digital twin model provides

data and performance measures that are not available from the field, such as approach delay,

queue length per lane, and vehicle information such as vehicle type, trajectory, speed, and

acceleration. These dynamic outputs from the digital twin inform the development of the

signal timing optimization algorithm.

In simpler terms, a digital twin is a virtual replica of a physical system. In this

case, the digital twin is a virtual model of a corridor. The digital twin is used to collect

data on traffic conditions and to develop an adaptive signal timing plan that optimizes fuel

consumption. The adaptive signal timing plan changes in real time to reflect changes in

traffic conditions. This helps to reduce congestion and improve fuel efficiency.

To develop and test the optimization algorithm, we deploy it to a simulated environ-

ment called the “Field Testbed Digital Twin”. Figure 4.3 presents the Field Testbed imple-

mentation architecture of our framework. This simulated environment provides the current

signal state, volume, and turn movement ratio information. The optimization algorithm uses

this information to generate optimized signal timings, which are then implemented in the

Field Testbed Digital Twin. The Field Testbed Digital Twin then simulates the optimized

signal timing plan for the historic day’s corridor traffic conditions. This allows us to test

different scenarios and develop the optimization algorithm by simulating trials.

31

Figure 4.3 Architecture of the proposed framework

4.2 Demonstration

In a real-world testbed, reinforcement learning (RL) controllers were found to sig-

nificantly improve fuel consumption and average travel time. The overall EcoPI [31] value

of the entire corridor was improved by 15.78% (Figure 4.4), and average travel time was

reduced by 20.81% (Figure 4.4). This was achieved by reducing the number of stops and

stop delays at traffic lights. To visualize the results, vehicle trajectories were analyzed at an

intersection called Houston and MLK. The trajectories (Figure 4.5) showed that RL-based

TSCs (traffic signal controllers) resulted in smoother and more efficient traffic flow. This

led to a reduction in fuel consumption and average travel time. These findings suggest that

RL controllers can be used to improve the efficiency of traffic signals, which can lead to

environmental and economic benefits.

32

(a) Overall EcoPI of intersections

(b) Average travel time on the main street

Figure 4.4 Performance of Actuated and RL-based controls

33

Figure 4.5 Trajectories of vehicles at Houston&MLK when using Actuated (left) and RL
(right)

34

CHAPTER 5

Single Camera-enabled RL-based TSC System supporting Life-long Assessment

Chapter 4 has addressed various problems of reliable settings and baselines by using

a digital twin. However, there is still a far path from digital twins to the field. It is

because the simulation environment is different from the real world, which is a diverse, non-

stationary and open-ended environment. This leads to issues related to unseen data, making

it difficult to have a RL control that is robust to all scenarios. Additionally, traffic control is

a problem that requires safety guarantees. Therefore, deploying RL-based TSCs necessitates

a comprehensive life-long monitoring and evaluation.

However, existing reinforcement learning-based traffic signal control systems are eval-

uated on static benchmarks that have limitations [11, 21]. These limitations include: lack

of abnormal scenarios, inability to capture long-term distribution shifts, and lack of real-

time monitoring capability. Therefore, we propose a new RL-based TSC system that can

be evaluated using an online dynamic benchmark [32]. Our system can constantly observe

and assess performance in near real time, allowing transportation operations to respond

rapidly to irregular situations. Our system’s near real-time capabilities ensure that it can

respond to unexpected changes in traffic patterns caused by special events or infrastructure

changes. Overall, our proposed system provides a reliable and efficient solution in uncertain

transportation environments.

35

Figure 5.1 The architecture of the proposed system. The green components are conducted
in real time while the blue ones come with one-minute delay.

5.1 Proposed framework

The proposed system is illustrated in Figure 5.1. It consists of five main components:

Vehicle Detection System, Reinforcement Learning Control, GRIDSMART System, Simula-

tion (Actuated Control), and Near Real-time Digital Twin. The Vehicle Detection System

and Reinforcement Learning Control are conducted in real time. This means that they can

process data and generate outputs immediately. The other three components, GRIDSMART

System, Simulation (Actuated Control), and Near Real-time Digital Twin, have a one-minute

delay. This means that they need to wait for one minute before they can process data and

generate outputs.

• Vehicle Detection System . Figure 5.2 presents the operation of our vehicle

detection system. The vehicle detection system works by first capturing frames every second.

These frames are then rotated and cropped to create four corresponding frames for each

approach. Next, YOLOv8 [33] is used to detect vehicles in three classes: cars, trucks, and

buses. Finally, the system determines the lane of each vehicle by finding the intersection of

the vehicle’s bounding box and the lane zones.

• Reinforcement Learning Control . Reinforcement learning is a type of ma-

chine learning that allows an agent to learn how to behave in an environment by trial and

36

Crop and
Rotate

Vehicle detection
by YOLOv8

Lane detection

Extract lane-
level features

3 2 0 5 6 ...

Figure 5.2 Illustration of the operation of our vehicle detection system which processes 360-
camera frames to lane-level features

37

error. RL agents learn by receiving rewards for taking actions that lead to desired outcomes.

In our system, the RL agent is responsible for controlling traffic lights at an intersection.

The agent’s state is defined by the number of vehicles in each 30-meter segment of each lane,

same to MPLight [7]. The agent’s action is to either keep the current traffic light phase or

switch to the next phase. The agent’s reward is calculated based on the traffic pressure [13],

which is the difference between the number of vehicles on outgoing lanes and the number of

approaching vehicles.

• GridSmart System . GridSmart is a computer vision system that monitors traffic

flows at intersections. It collects data on traffic volume, speed, and direction, and aggregates

this information into features at zone, lane, and movement levels. However, this aggregation

process introduces a one-minute delay, which can be problematic for real-time RL-based

TSCs. Therefore, RL-based TSCs need to be able to adapt to traffic flows in real time, and

the one-minute delay from GridSmart can make this difficult.

• Simulation and Near Real-time Digital Twin . Simulation and Near Real-

time Digital Twin (NRDT) are using two traffic signal control strategies. NRDT receives

SPaT data from the field, allowing it to synchronize its traffic lights with those in the field.

Actuated Control does not receive SPaT data, but it is a simple logic method that has been

extensively studied and shown reliable results in previous simulation research. Therefore,

even if the field does not implement Actuated Control, we are still able to measure its per-

formance through advanced simulation. To evaluate the performance of the two algorithms,

we calculate the outputs of Simulation and NRDT. Actuated Control is used as the baseline

because it is widely implemented in real-world transportation systems.

5.2 Demonstration

5.2.1 Vehicle Detection System

The vehicle detection system is based on YOLOv8. We collected and annotated 500

frames of video footage, which included 3 vehicle classes: cars, trucks, and buses. Cars made

38

up the majority of the vehicles, accounting for 96.91% of the total. We fine-tuned YOLOv8

on our dataset for 100 epochs and achieved a mean average precision of 0.964, 0.724, and

0.655 for cars, trucks, and buses, respectively.

5.2.2 RL-based Traffic Signal Control

we develop a digital twin of the MLK Smart Corridor, which is a 11-intersection

stretch of road in downtown Chattanooga, TN for a day of May 15th 2021 [30]. In this

paper, we compare the performance of two traffic signal control (TSC) algorithms: RL and

actuated control. We simulate the intersection of MLK and Market Street during the one-

hour peak period from 4pm to 5pm. Our RL-based TSC algorithm demonstrates significant

improvements in average queue length, speed, travel time, and total fuel consumption, with

improvements of 22.23%, 6.34%, 4.29%, and 3.69%, respectively. The details of improve-

ments are shown in Figure 5.3.

39

58000 59000 60000 61000
Simulation Time (second)

2

4

6

8

Qu
eu

e
Le

ng
th

 (#
ve

hs
)

Actuated RL

(a) Queue length

58000 59000 60000 61000
Simulation Time (second)

5

6

7

Sp
ee

d
(m

et
er

/s
ec

on
d)

Actuated RL

(b) Average speed

58000 59000 60000 61000
Simulation Time (second)

25.0

27.5

30.0

32.5

35.0

Tr
av

el
 T

im
e

(s
ec

on
d) Actuated RL

(c) Average travel time

58000 59000 60000 61000
Simulation Time (second)

2000

3000

4000

5000

Fu
el

 C
on

su
m

pt
io

n
(m

g)

Actuated RL

(d) Total fuel consumption

Figure 5.3 Comparison of our RL-based TSC and the actuated control (which is currently
running in the real-world testbed) at the intersection of Market & MLK from 4pm to
5pm

40

Part II

Citywide Public Transit Simulation

41

CHAPTER 6

SIMCal: A High-Performance Toolkit For Calibrating Traffic Simulation

As already stated in Chapter 1, public transit simulation is a citywide problem. Such

large-scale traffic simulations require careful calibration due to the complex nature of traffic

patterns and the multitude of variables involved. Calibrating these simulations involves

accurately representing real-world conditions, such as road layouts, traffic signals, vehicle

behavior, and driver characteristics. Ensuring the simulation matches actual traffic flow is

crucial for improving the simulation accuracy and obtaining realistic results.

In this work, we introduce SIMCal [34] – a novel toolkit for calibrating traffic simula-

tions. It supports multiple state-of-the-art algorithms, parallelization capabilities, flexibility,

and open source nature. These features make SIMCal a powerful and versatile tool that can

be used to improve the accuracy of traffic simulations in a variety of settings.

6.1 Brief Description of SIMCal

6.1.1 SIMCal’s framework

SIMCal has a three-part framework: Simulation Processing, Optimization, and Out-

put&Visualization, illustrated in Figure 6.1. Simulation Processing executes simulations

and collects output data via APIs. Optimization finds a parameter set that can accu-

rately represent the real traffic by performing a trial-and-error process, i.e., an iteration of

a loop adjusting parameter sets and evaluating these sets via Simulation Processing. Out-

put&Visualization represents the optimized parameter.

42

Simulation
configuration

Algorithm
configuration

Traffic
simulator

Optimization

Simulation Processing

Observed
data

Output
&

Visualization

Parameter
set

Simulated
data

Simulator
APIs

Figure 6.1 SIMCal’s framework

43

6.1.2 Inputs

Simulation configuration . Our toolkit can be used to calibration traffic simula-

tion using SUMO, a popular traffic simulator. The simulation configuration is made up of

files that describe the road network, routes, and detectors.

Observed speed data . This csv file contains the average real-world observed speed of traf-

fic during intervals. Our toolkit allows users to choose the interval length. Table 6.1 shows

an example of 5-minute observed speed data.

Table 6.1 Five-minute observed speed data format

DetectorID #1 DetectorID #2 ...
2021-05-11 00:00:00 10.2 15.6 ..
2021-05-11 00:05:00 12.5 16.4 ..

...

Configuration . The YAML file below shows an example of how to set up SIMCal. SIMCal

allows users to choose how to allocate computing resources and to select parameters of the

simulation that need to be tuned, such as the range.

algorithm:

name: "PSO"

hyperparameter: {

"w": 0.5,

"number_particles": 15

}

objective_function: "MAPE"

number_iterations: 50

number_processors: 15

simulation:

sumo_cfg: corridor.sumocfg

44

obs_data: observed_speed_data.csv

passenger:

MinGap: [1, 3]

Tau: [0, 2]

Accel: [2, 4]

...

initial: "default"

6.1.3 Optimization

Our toolkit uses evolutionary algorithms to optimize traffic simulation parameters.

Figure 6.2 presents the flowchart of the optimization process. The optimization process

starts by initializing a population of parameter sets. Then, there is a loop of evaluation and

evolution. The evaluation step measures the differences between speed data from detectors

in the real world and in the simulation. SIMCal offers some popular objective functions

for evaluation, including MSE, MAE, and MAPE. The evolution step is about how the

population evolves, which is done using evolutionary algorithms. There are four available

evolutionary algorithms implemented in SIMCal:

1. Genetic Algorithm (GA), which is inspired by the natural evolution, implements bio-

logical operators such as selection, mutation, and crossover [35].

2. Particle Swarm Optimization (PSO) simulates movements and intelligence of swarms

[36].

3. Firefly Algorithm (FA) follows the flashing behavior of fireflies [37].

4. Simulated Annealing (SA) is inspired by the annealing technique in metallurgy [38].

45

INITIALIZATION:
Initial a population, i.e., n parameter sets

[1, 0.5, 2, ...]
[1, 0.7, 1, ...]

...

EVALUATION:
Run simulation to get value of the object

function for each parameter set (in parallel)

Good enough
or

Exceed #iters

EVOLUTION:
Do evolutionary optimization algorithms

to get a new population

FINISH:
Get the best parameter set

Yes

Figure 6.2 Flowchart of the optimization process

46

6.1.4 Output and Visualization

The optimization process finds a parameter set that minimizes the objective function.

The parameter set can include parameters for car-following models, such as MinGap and Tau,

and for vehicle characteristics, such as speed deviation, acceleration, and deceleration. The

number of parameters is usually large, so it is difficult to visualize the parameter sets found

by the optimization process using coordinate systems. SIMCal offers using PCA to reduce

the dimensionality of the parameter space so that we can visualize the solutions.

6.2 Experiments & Results

6.2.1 Experiment setting

All our experiments are conducted using SUMO on a computer with 80 processors

and 188 GB of memory. In these experiments, we calibrate for six parameters:

• MinGap: the minimum distance between a vehicle and its leader in meter.

• Tau: the minimum time headway in seconds.

• Sigma: the driver imperfection – a value between between 0 and 1, which represent the

perfect driving and the maximum driving imperfection.

• Speed deviation

• Acceleration

• Deceleration

6.2.2 Datasets

• MLK Corridor . Traffic data was collected from the MLK Smart Corridor in-

cluding 10 signalized intersections in downtown Chattanooga, TN, USA on May 11, 2021.

The data includes information on vehicle routes, speeds, and traffic signal timing. This data

47

was collected using a variety of methods, including detectors, cameras, and LiDAR devices.

The data is accurate and represents real-world traffic conditions.

• City of Chattanooga . We get traffic data from the whole city from INRIX – a com-

prehensive database of historical traffic time and speed. INRIX is a company that collects

traffic data from a variety of sources, including sensors, fleet vehicles, taxis, users of the

INRIX Traffic App, and local transportation authorities. The Chattanooga simulation, de-

veloped in [8], uses this data to create a realistic model of traffic flow in the city. The

simulation includes a road network from Open Street Map and traffic demands based on an

Origin-Destination matrix.

6.2.3 Algorithm effects

• Setting . We simulate the corridor from 5 a.m. to 10 a.m. and conduct calibration

using four algorithms: simulated annealing (SA), tabu search (FA), genetic algorithm (GA),

and particle swarm optimization (PSO).

• Result . Figure 6.3 presents performance of the algorithms. All four algorithms

significantly improve the mean absolute percentage error (MAPE), detailed in Table 6.2.

PSO and GA show the best performance, with MAPE values of 0.0838 and 0.0848, respec-

tively. Both algorithms improve MAPE by almost 50% compared to the simulation using

the default parameter set. The traffic calibration problem may have many local minima,

which can cause SA to become stuck. PSO and GA have more versatile update strategies

than SA, which allows them to escape local minima more easily. Therefore, SA is not as

effective as PSO and GA in this case.

6.2.4 Population size effects

• Setting . We simulate traffic in a corridor from 5 a.m. to 10 a.m. Due to the

high computational cost, we only analyzed PSO. We conduct experiments with different

48

SA FA GA PSO Baseline

Algorithm

0.00

0.05

0.10

0.15

M
A

P
E

0.1306

0.0999
0.0848 0.0838

0.1669

Figure 6.3 SIMCal’s performance for calibrating the MLK corridor with different algorithms.
The baseline is the simulation using default parameters

population sizes of 5, 15, 30, and 60 particles to measure the effects of population size.

• Result . All population sizes significantly improved the mean absolute percentage

error (MAPE) by at least 44.63%. The larger the population size, the better the parameter

set found. The smallest population size of 5 particles achieved a MAPE of 9.24%, while

the largest population size of 60 particles achieved a MAPE of 8.05%, which is the best

performance. Figure 6.4 shows the MAPE over iterations of the population sizes. To visualize

the results, we applied principal component analysis (PCA) to reduce the dimensions of the

parameter sets. Figure 6.5 presents a visualization of the parameter sets found by PSO.

The population sizes of 5 and 15 particles achieved equivalent results of 9.24% and 9.20%

MAPE, respectively. However, their solutions are not close in the PCA space. This means

that it is possible to have multiple solutions that provide equivalent performance for traffic

calibration.

49

0 10 20 30 40 50

Iteration

0.10

0.15

0.20

0.25

0.30

M
A

P
E

Population size

baseline

5

15

30

60

Figure 6.4 MAPE over iterations in terms of different population sizes

Figure 6.5 Visualization of parameter sets during 50 iterations by using PCA

50

5-min 15-min 30-min

Interval

0.0

0.1

0.2

0.3

M
A

P
E 0.16

0.09
0.07

0.21

0.17 0.16

Type

Calibrated

Default

Figure 6.6 MAPE in terms of different intervals

6.2.5 Interval effects

• Setting . We calibrate the traffic in a corridor from 5 a.m. to 10 a.m. To measure

the effects of the interval size, we calculate the objective function with different intervals of

5, 15, and 30 minutes.

• Result . The calibration process improves MAPE in all cases. The improvement

was most significant for the 30-minute interval (57.70%), illustrated in Figure 6.6. The

impact of vehicle individuality on MAPE is higher for shorter intervals, leading to a negative

correlation between MAPE and interval size. For example, the average error of average

speeds for each 30-minute interval is only 6.63%, while the error for each 5-minute interval

is 15.96%. Figure 6.7 shows a visualization of the parameter sets found in the PCA space.

This space suggests that the final solutions will be different for different interval sizes.

51

Figure 6.7 PCA-space visualization of parameter sets for different intervals

6.2.6 Traffic demand effects

• Setting . In this experiment, we calibrate the traffic model for two different traffic

scenarios: low-demand and high-demand. The low-demand scenario simulates traffic at

night, while the high-demand scenario simulates traffic during peak hours, illustrated in

Figure 6.8. Figure 1 shows the number of vehicles per hour on May 11, 2021 at the MLK

corridor. The low-demand setting has an average of 306 vehicles per hour, while the high-

demand setting has an average of 4146 vehicles per hour, which is about 13.5 times higher.

• Result . Figure 1 shows the MAPE results before and after calibration for low-

and high-demand traffic scenarios. SIMCal reduced the MAPE by 43.90% and 62.70%,

respectively. Table 6.2 shows that the MinGap values are not much different. However, the

found parameter sets show that the minimum headway time tends to decrease when the

traffic is crowded. This trend has also been observed in other studies [39]. Sigma represents

the slow-to-start behavior. The results show that there are more slow-to-start behaviors

52

in low-demand traffic than in high-demand traffic. Drivers also tend to accelerate faster in

crowded traffic than in sparse traffic.

0 5 10 15 20

time in hour

0

1

2

3

4
n
u
m

b
er

o
f

v
eh

ic
le

s

×103

low demand

high demand

Figure 6.8 Traffic demands per hour on May 11, 2021 at the MLK corridor

6.2.7 Network size effects

• Setting . In this experiment, we calibrate a traffic model for two different test sites.

The first test site is a corridor that includes 4.34 km of roads and 8,251 vehicles. The second

test site is the entire Chattanooga transportation network, which consists of 6176.69 km of

roads and around 250,000 vehicles.

• Result . SIMCal reduced the MAPE by 22.94% and 44.42% for the corridor and

city simulations, respectively. However, the city-level simulation still has a significant error

of 36.21%. This may be because using the same parameters for the whole city is not efficient,

as different regions have different driving behaviors. For example, downtown and suburban

areas have different traffic patterns. Figure 1 shows the MAPE during the calibration pro-

cess for the simulation of Chattanooga. The algorithm took around 2.5 days to converge

(Figure 6.9), due to the heavy demand on simulation computing. Calibrating the corridor

53

only took several hours.

0.0 2.5 5.0 7.5 10.0

days

0.45

0.50

0.55

0.60

0.65

M
A

P
E

Network

City-Level

Figure 6.9 Running time to calibrate the Chattanooga simulation

54

T
ab

le
6.

2
D

et
ai

le
d

re
su

lt
s

of
al

l
ex

p
er

im
en

ts

E
x
p
e
ri
m
e
n
ts

P
a
ra

m
e
te
rs

R
e
su

lt
s

F
a
c
to

r
T
y
p
e

M
in
G
a
p

T
a
u

S
ig
m
a

S
p
e
e
d

A
c
c
e
l

D
e
c
e
l

M
A
P
E

Im
p
ro

v
e
m
e
n
t

-d
e
v
ia
ti
o
n

(%
)

(%
)

A
lg

or
it

h
m

S
A

4
.0

0
0

0
.9

1
9

0
.5

1
3

0
.2

0
0

0
.6

0
0

4
.0

1
8

1
3
.0

6
2
1
.7

5
F
A

1
.0

0
0

1
.4

7
3

0
.3

9
9

0
.0

1
0

1
.2

9
3

5
.6

8
2

9
.9

0
4
0
.6

5
G

A
1
.5

6
2

2
.0

0
0

0
.0

0
0

0
.1

8
8

2
.0

0
0

6
.0

0
0

8
.4

8
4
9
.2

0
P

S
O

2
.0

9
0

1
.3

4
5

0
.3

8
3

0
.2

0
0

2
.4

2
6

4
.4

6
8

8
.3
8

4
9
.7
5

P
op

u
la

ti
on

si
ze

5
2
.4

8
4

0
.9

9
0

0
.8

4
2

0
.1

0
0

2
.7

9
6

4
.1

7
2

9
.2

4
4
4
.6

3
15

2
.9

4
0

1
.3

9
2

0
.7

0
1

0
.1

0
0

2
.4

0
7

4
.7

2
6

9
.2

0
4
4
.8

5
30

2
.0

9
0

1
.3

4
5

0
.3

8
3

0
.2

0
0

2
.4

2
6

4
.4

6
8

8
.3

8
4
9
.7

5
60

3
.0

0
0

2
.0

0
0

0
.5

5
1

0
.1

0
0

2
.2

1
9

4
.9

1
5

8
.0
5

5
1
.7
8

In
te

rv
al

5-
m

in
2
.4

8
4

1
.6

7
1

0
.6

9
2

0
.1

0
0

2
.4

3
8

4
.6

4
1

1
5
.9

6
2
2
.9

4
15

-m
in

2
.9

4
0

1
.3

9
2

0
.7

0
1

0
.1

0
0

2
.4

0
7

4
.7

2
6

9
.2

0
4
4
.8

6
30

-m
in

2
.2

1
9

0
.7

4
4

0
.9

5
6

0
.2

0
0

3
.2

3
9

4
.6

7
1

6
.6

3
5
7
.7

2

D
em

an
d

L
ow

2
.5

2
5

1
.5

0
4

1
.0

0
0

0
.1

0
0

2
.9

4
1

4
.8

9
9

1
7
.4

4
4
3
.9

0
H

ig
h

2
.5

8
5

1
.0

5
0

0
.6

8
3

0
.1

0
0

2
.6

6
2

3
.8

5
4

6
.4

0
6
2
.7

0

N
et

w
or

k
si

ze
C

or
ri

d
or

2
.4

8
4

1
.6

7
1

0
.6

9
2

0
.1

0
0

2
.4

3
8

4
.6

4
1

1
5
.9

6
2
2
.9

4
C

it
y

L
ev

el
1
.7

3
4

2
.0

0
0

1
.0

0
0

0
.2

0
0

4
.0

0
0

3
.0

0
0

3
6
.2

1
4
4
.4

2
D
e
fa
u
lt

o
f
S
U
M

O
2
.5

1
0
.5

0
.1

2
.6

4
.5

R
a
n
g
e

[1
-

3
]

[0
-

2
]

[0
-

1
]

[0
.1

-
0
.2

]
[2

-
4
]

[3
-

6
]

55

CHAPTER 7

BTE-Sim: Fast Simulation Environment For Public Transportation

Clearly, transit simulation is a powerful tool that can be used to improve transporta-

tion systems and make cities more livable. It can help transportation planners and engineers

to understand how people move around a city, test new transportation ideas, and plan for

the future. In addition, transit simulation can be used to educate the public about trans-

portation issues and promote innovation in transportation. Transit simulation works by

creating a computer model of a transportation system. This model can be used to simulate

the movement of people and vehicles, as well as the impact of different transportation poli-

cies and projects. For example, a transit simulation can be used to see how a new bus route

or train line would impact traffic patterns, or how a change in parking rates would affect

the number of people who drive to work. Therefore, transit simulation is a valuable tool for

transportation planners and engineers.

Transit simulation is a citywide problem. For example, Chattanooga’s transportation

system has the total road length of 13455 km, 28311 junctions, and around 250,000 vehicles

per day. Simulating simulation such a huge system can take a round 8 hours for one-day

traffic [8]. A transit simulation is a computer model that can be used to study how different

factors affect the performance of a transportation system. Figure 7.1 illustrates three main

components of a transit simulation: the transit system, background traffic, and transporta-

tion infrastructure. The transit system is made up of buses, bus stops, and commuters.

Background traffic includes other modes of transportation, such as private vehicles, taxis,

freight vehicles, and pedestrians. The transit system and background traffic share the use of

transportation infrastructure, such as roads, bridges, and tunnels. This means that they can

56

Transit system

Transportation
Infrastructure

Buses

Bus stops

Passenger

Background Traffic

Personal cars

Motorbikes

Pedestrians

Road networkTrucks

Traffic lights

Traffic signs

Passenger

Ridesharing

Buses

Bicycles

Figure 7.1 Components of a transit simulation

affect each other. For example, if there is a lot of background traffic, it can make it more

difficult for buses to get around. This can lead to longer travel times for commuters.

In this work, we address a novel problem – how to conduct a new simulation where

only the transit system’s setting (e.g., number of buses) changes while the rest remains

stable. This scenario happens in many transit route optimization and planning tasks. For

example, greedy or evolutionary approaches are usually used to solve these tasks. This

involves repeatedly simulating the process while adjusting only the bus routes.

One naive way is to update a transit system’s setting and start from scratch each

time. However, this can be time-consuming and inefficient because of the expensive com-

puting cost of citywide simulations. To improve the computing-time efficiency, we propose

a module called Background Traffic Elimination (BTE) [40]. BTE simulates the effects of

57

background traffic on transit systems. We call this method of transit simulation BTE-Sim.

The new module can simulate transit systems 13 times faster than previous methods, while

still producing similar results in terms of trip duration, bus delay, bus speeds, total distance

traveled, and virtual passenger alightings.

7.1 Brief Description of BTE-Sim

Figure 7.2 illustrates the key idea of BTE-Sim which replaces the background traffic by

a historical edge-speed database. The database can be real-world observed as well as achieved

from full simulations. When removing the background traffic, the movement behavior of

buses will be changed. More specifically, the buses are implemented a car-following model

that accounts the leader’s speed and acceleration, shown in Figure 7.3. When the background

traffic are eliminated, the buses will be free moved and easy to reach the speed limit of the

edge. Therefore, our BTE-Sim dynamically adjusts the speed limit of all edges based on

the historical database to force the buses to move as in a full simulation. The operation of

BTE-Sim is illustrated in Figure 7.5.

7.2 Experiments and Results

7.2.1 Exp 1: BTE-Sim using different sources for the historical edge-speed

database

• Setting . To simulate the transit system on January 11, 2022, we use BTE-Sim

from three sources: a previous run of Transit-Gym, INRIX, and Automated Passenger Count

(APC).

• Result . In Figure 7.6, the error in the time of arrival (ToA) is larger for data from

APC (Automatic Passenger Counter) than for data from INRIX (a traffic data company).

We could have used other data sources, but BTE-Sim (a bus travel time estimation model)

performed best when using background traffic times generated using Transit-Gym (a transit

58

Figure 7.2 BTE replacing the background traffic by a historical edge-speed database

Figure 7.3 Bus movement with background traffic

Figure 7.4 Bus movement without background traffic

59

Figure 7.5 BTE-Sim: Transit simulation without background traffic

simulation platform). Therefore, we used the background traffic speeds from Transit-Gym

for the rest of the experiments. Moreover, it is possible to use any other data sources, such

as google map, that include edge speeds.

5 10 15 20
hour of day

0

10

20

30

AB
S

Er
ro

r o
f T

oA
 (m

in
)

Sim
APC
INRIX

Figure 7.6 Comparing background traffic sources for BTE-Sim

60

7.2.2 Exp 2: BTE-Sim achieves competitive results compared to Transit-Gym

• Setting . We conduct simulations of public transit in Chattanooga on January

11, 2022. We use real data from that day’s transit operations. The city’s planning agency

provided us with an origin-destination (OD) travel matrix which are used to generate back-

ground traffic for Transit-Gym.

• Result . To evaluate the simulation, we compared the Time of Arrival (ToA) at bus

stops between the simulation and real world times. We measured the difference in minutes.

Figure 7.7 shows the absolute error of ToA for Transit-gym and BTE-Sim. BTE-Sim uses

historical edge speeds and is able to mimic the effects of background traffic. BTE-Sim has a

consistently lower ToA than Transit-gym for an entire day’s operation. Moreover, BTE-Sim

can provide an extensive analysis of transit performance as Transit-gym does. Figure 7.8

depicts the performance of the Chattanooga’s transit system on January 11, 2022 by BTE-

Sim.

5 10 15 20
hour of day

5

10

15

AB
S

Er
ro

r o
f T

oA
 (m

in
)

TransitGym
BTE-Sim

Figure 7.7 Comparing Transit-gym and BTE-Sim on absolute error of Time of Arrival

61

1 10A10G1415A16 21 28 2A 3 4 9 DTS33
Routes

0

5

10

15

20

25

30

35
M

ax
 o

cc
up

an
cy

 o
n

ea
ch

 b
us

(a) Maximum occupancy

0 5 10 15 20 25 30 35 40
Occupancy of Buses

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

De
ns

ity

Hour
08
12
17

(b) Density of Route 4

Figure 7.8 Analysis examples for the transit system of Chattanooga on January 11, 2022,
using BTE-Sim

62

7.2.3 Exp 3: BTE-Sim improves the simulation time

• Setting . We aim to measure the improvement of BTE-Sim in different traffic

demand scenarios. We vary the number of background vehicles from 100K to 1.4M.

• Result . Table 7.1 shows that BTE-Sim is significantly faster than Transit-Gym.

For a baseline of 100,000 vehicles, BTE-Sim run 12 times faster than Transit-Gym. As the

number of vehicles increased, the difference in speed between BTE-Sim and Transit-Gym

become even more pronounced. When the number of vehicles is quadrupled, Transit-Gym

execution time increases by 8 times, while BTE-Sim computation time only grows by 2 times.

This shows that BTE-Sim is highly adaptable to traffic volume changes and can be re-run

for increased traffic scenarios without much time penalty.

#Vehicles Transit-Gym BTE-Sim
100K 27.7 minutes 2.21 minutes
400K 4 hours 4 minutes 5.11 minutes
800K 16 hours 51 minutes 7.81 minutes
1400K 41 hours 18 minutes 8.27 minutes

Table 7.1 Simulation time of Transit-Gym and BTE-Sim for scenarios with different number
of vehicles

7.2.4 Exp 4: BTE-Sim simulates different dates

• Setting . We use BTE-Sim to simulation a week, from January 10, 2002 to January

16, 2022. It is important to note that the transit settings for different dates are not the same.

For example, a trip may be offered on Monday but not on other days.

• Result . As shown in Figure 7.9, the simulated values are generally tightly clus-

tered, with short inter-quartile ranges for each day. The exception is January 12, which has

a wider dispersion. The mean and maximum absolute errors in the time of arrival (ToA) are

consistently below 10 minutes. These results confirm that BTE-Sim has a low error margin

when simulating regular traffic and transit operations on different days.

63

20
22

-01
-10

20
22

-01
-11

20
22

-01
-12

20
22

-01
-13

20
22

-01
-14

20
22

-01
-15

20
22

-01
-16

date

0

10

20

30

AB
S

Er
ro

r o
f T

oA
 (m

in
)

Figure 7.9 BTE-Sim over different dates

64

Part III

Neuroevolution for Training Neural

Networks

65

CHAPTER 8

Neuroevolution for transportation applications

Neural networks and deep learning have been successfully applied to many transporta-

tion applications [41]. There are three main approaches to deep learning in transportation:

supervised learning, unsupervised learning, and reinforcement learning. Supervised learning

is used for prediction tasks, such as traffic speed prediction and travel time prediction. Un-

supervised learning is used for anomaly detection and feature representation. Reinforcement

learning is the state-of-the-art method for control tasks, such as traffic signal control (Part I)

and autonomous driving. In general, deep learning is extremely popular in ITS, so even a

small improvement in fundamental of neural networks, e.g., the way that neural networks

are trained or designed, can have a big impact to the field.

8.1 Training neural networks

Training neural networks can be considered as an optimization process which find

values of trainable parameters to minimize the loss function applied on the entire training

dataset.

W = argmin
W

(L(net(W,X), y)) , (8.1)

where L is the lost function, W is the trainable parameters, X and y are the training dataset

– inputs and labels respectively.

66

8.2 Training by Gradient Descent

Most neural networks have been trained by Gradient Descent (GD). The idea of GD

is to repeat of taking small steps in the opposite direction of (approximate) the gradient.

w = w − η · g
(
∂L(net(W,Xbatch), ybatch)

∂w

)
, (8.2)

where ∂L
∂w

is gradient calculated by the backpropagation algorithm; W is trainable param-

eters; η is the learning rate; and g is the optimizer’s function , e.g., Adam, SGD, and

RMSprop.

8.3 Neuroevolution approaches

Unlike gradient descent (GD), which updates a single model iteratively, neuroevolu-

tion (NE) conducts an evolutionary process on a population of models. The following section

provides more details on this training process.

Figure 8.1 shows the steps involved in training a neural network using neuroevolution.

The first step is to initialize a population of models. Each model in the population is a

randomly-initialized neural network. The next step is to evaluate the performance of each

model. This is done by running the model on a training dataset and measuring its accuracy.

The best models are then selected to be parents for the next generation. The parents are

recombined to form new models. The new models are then mutated, which means that some

of their weights are changed randomly. This process is repeated until the desired performance

is achieved.

In this work, we investigate five NE algorithms including Genetic Algorithm, OpenAI

Evolution Strategies, Augmented Random Search, Covariance Matrix Adaptation Evolution

Strategy, and Policy Gradients with Parameter-based Exploration.

• GA – Genetic Algorithm [42] is inspired by the process of natural selection. It

works by mimicking the biological operators of selection, mutation, and crossover.

67

Initialization
Initialize a population

of models

Evaluation Selection

RecombinationMutation

Trained model

Evolutionary
Process

Figure 8.1 Flow chart of training neural network by NE

• OpenES – OpenAI Evolution Strategies [43], presented in Algorithm 1, is a way

to find the best solution to a problem by iteratively mutating a population of individuals

and then selecting the best individuals to continue the process. The mutation process adds

a random amount of noise to the weight values of the individuals, which helps to prevent

the algorithm from getting stuck in a local optimum. The selection process chooses the

individuals with the highest fitness values to continue the process, which helps to ensure

that the algorithm is finding the best possible solutions.

• ARS – Augmented Random Search [44] is an evolutionary algorithm that is con-

sidered an improvement over OpenES. It does this by considering both directions of samples,

instead of just one, and by conducting selection, instead of only calculating the average of

all solutions. This is beneficial because the goal of ARS is to maximize the collected fitness

68

Algorithm 1 OpenES algorithm

Input: learning rate η, noise standard deviation σ, initial weight W0, population size P
for t in 1 to #iters do

Sample ε1, ..., εP ∼ N (0, I),
fi ← Evaluate(Wt + σεi) for i = 1, ..., P . Evaluation

Wt+1 ←Wt + η 1
σ·P

∑P
j=1 fjεj . Update

end for

values, and removing some bad solutions maybe a judicious strategy.

Algorithm 2 ARS algorithm

Input: learning rate η, noise standard deviation σ, initial weight W0, population size P , number of
top-performing solutions to use b
for t in 1 to #iters do

Sample ε1, ..., εPwith i.i.d. standard normal entries
f±i ← Evaluate(Wt ± σεi) for i = 1, ..., P . Evaluation
Sort solutions by max

(
f+i , f

−
i

)
Select b top solutions ε1..b . Selection
Wt+1 ←Wt + η 1

σ·b
∑b
j=1 εj

[
f+j − f

−
j

]
. Update

end for

• CMA-ES – Covariance Matrix Adaptation Evolution Strategy [45] CMA-ES is a

stochastic optimization algorithm that changes the distribution parameters during searching,

unlike OpenES and ARS, which sample from a static distribution. CMA-ES is designed for

non-linear, non-convex, black-box optimization problems in continuous domains. Algorithm

3 provides a workflow of CMA-ES. The key idea of CMA-ES is the maximum-likelihood

principle, which states that the distribution parameters are updated at every generation to

maximize the likelihood of previously successful candidates.

Algorithm 3 CMA-ES algorithm

Input: population size P
Initialize: distribution parameters: C = I, µ, σ
for t in 1 to #iters do

for i in 1 to P do
W i ∼ N (µ, σ2C), . Multivariate normal distribution
fi ← Evaluate(Wi)

end for
W {1...P} ←W s(1)...s(P) . Sort solutions based on fi
µ← Update mean (W1, ...WP)
C ← Update covariance matrix
σ ← Update standard deviation

end for

69

• PGPE – Policy Gradients with Parameter-based Exploration [46] PGPE, described

in Algorithm 4, is a method for estimating the gradient of the likelihood function by sampling

directly from the parameter space. The parameters of the distribution are updated during

the search, which helps to improve the accuracy of the estimates.

Algorithm 4 PGPE algorithm

Input: population size P
Initialize: distribution parameters: µ, σ
for t in 1 to #iters do

for i in 1 to P do
Sample W i ∼ N (µ, σ2I)
fi ← Evaluate(W i)

end for
T = [tij]ij with tij :=

(
W j
i − µi

)
S = [sij]ij with sij :=

t2ij−σ
2
i

σi

r = [(f1 − b), ..., (fP − b)]T
Update µ = µ+ ηTr
Update σ = σ + ηSr
Update baseline b accordingly

end for

8.4 Experiments for Traffic prediction

We investigate the working of NE in the traffic prediction task which is the most

popular supervised-learning job in transportation.

• Dataset. We experiment on the PeMS dataset which includes data from 11,160

detectors in California [47]. To reduce the computing requirements, 50 sensors within four

weeks are randomly selected. The first three weeks of data are used for training while the

last week is for testing. Finally, we aggregate the 30-second data frequency into 5-minute by

getting average values.

• Baselines. To compare the two approaches, we use the same neural network

architecture, proposed by [48], for both neuroevolution and gradient-based approaches. The

network consists of a LSTM layer with 32 hidden units and a fully connected layer with 32

units. In total, the model has 6,081 trainable parameters. The activation function is ReLU

and the optimizer is RMSprop with the default learning rate of 0.001. The training and

70

testing data are the same, the only difference is the training process. Since the patterns in

time-series data of various sensors are different, we train a separate model for each sensor.

Each model is trained with 500 epochs and the best model is saved during training.

• Algorithm effects. Figure 8.2 depicts the average MSE over iterations. The

baseline is models trained by GD. In general, most NE methods outperform GD on the

training loss. Among NE algorithms, ARS and PGPE converge fastest after 40K iterations

and also reach the lowest training loss. Table 1 shows the number of time series where each

training algorithm achieved the best performance on the validation set. PGPE is the best

method, achieving the lowest testing MSE on 18 time series. GD outperforms NE methods

on only 1 time series, which is 2% of the total dataset. Although the average training loss

of ARS is better than CMA-ES, CMA-ES obtained the best testing MSE for 16 time series,

compared to 8 time series by ARS. This suggests that ARS is not good at generalization

and is more likely to overfit the training data. Furthermore, Table 8.2 provides the average

training time. Generally, GD’s training time is shorter than all NE’s.

0 20000 40000 60000 80000 100000
Iteration

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Tr
ai

ni
ng

 lo
ss

 (M
SE

) GD
GA
PGPE

OpenES
ARS
CMA-ES

Figure 8.2 Average MSE of 50 time series during training

Method GD GA PGPE OpenES ARS CMA-ES
#TimeSeries 1 5 18 2 8 16

Table 8.1 Number of time series that methods achieve the best performance on the testing
data

71

0 10 20 30 40 50
Sensor ID

0.0

2.5

5.0

7.5

10.0

12.5

M
SE

GD
GA
PGPE
OpenES
ARS
CMA-ES

Figure 8.3 MSE on the testing data of 50 selected time series

0 20000 40000 60000 80000 100000
Iteration

0

2

4

6

8

10

Te
st

in
g

lo
ss

 (M
SE

) GD
GA
PGPE

OpenES
ARS
CMA-ES

0 20000 40000 60000 80000 100000
Iteration

0

2

4

6

8

10

Te
st

in
g

lo
ss

 (M
SE

) GD
GA
PGPE

OpenES
ARS
CMA-ES

Figure 8.4 Testing loss curves of Sensor 2 and 11 over iterations

• Population size effects. To understand effects of the population size, we train

models with different settings for the population size, but keep all other hyperparameters

the same. We only focus on PGPE, as it was the algorithm that produced the best results

in the previous experiment.

All population sizes outperform GD, but that the best performance is achieved with

a population size of 512. This is surprising because a larger population size is generally

expected to perform better. However, note that our population sizes are considered quite

small for the search space of R6081. For example, a population size of 200 is used for the

search space of R3 in [49]. This suggests that there is a trade-off between population size

and computing capacity. A larger population size can provide a better global ability to avoid

local minima, but it is also more computationally expensive.

72

Method Total training One-iteration
time (s) training time (ms)

GD 89.24 1.89
GA 332.08 3.32

PGPE 228.47 2.28
OpenES 272.75 2.73

ARS 265.16 2.65
CMA-ES 244.76 2.45

Table 8.2 Average training time for each time series

0 20000 40000 60000 80000 100000
Iteration

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Tr
ai

ni
ng

 lo
ss

 (M
SE

) Baseline
64
128
256

512
1024
2048

Figure 8.5 PGPE’s performance with various population sizes

• Learning rate effects. We study the effects by varying the learning rate while

keeping other hyperparameters.

Figure 8.6 shows the performance of PGPE with different learning rates. The loss

value is a measure of how well the model fits the training data, and convergence time is

the time it takes for the model to reach a stable state. The baseline is the performance of

GD. This suggests that a lower learning rate allows the model to converge more slowly and

avoid overfitting. The learning rate of 0.1 obtained an unstable result because it was too

high, causing the model to oscillate between different minima. The learning rates of 0.01

and 0.001 have better performance than the baseline because they are lower and allow the

model to converge more slowly. The setting with the learning rate of 0.001 outperforms the

baseline by around 35% on the training loss, indicating that it is the best performing setting.

• An interesting visualization. We use a new technique called filter-wise nor-

73

0 20000 40000 60000 80000 100000
Iteration

0

5

10

15

20

Tr
ai

ni
ng

 lo
ss

 (M
SE

) Baseline
0.001
0.01
0.1

Figure 8.6 PGPE’s performance with various learning rates

malization [50] to visualize the loss surfaces of LSTM networks for traffic prediction. This

technique helps us to see more detail in the loss surfaces than previous techniques, which

were limited by the complexity of the loss function. We can use this technique to compare

loss surfaces for different network architectures and training datasets. In this paper, we focus

on comparing loss surfaces for the same network architecture but different time series.

The loss surfaces of the time series of Sensors 04 and 39 are shown in Figures 8.7

and 8.8, respectively. As shown in Figure 8.3, NE outperforms GD on Sensor 04, while

GD is better than NE for Sensor 39. Figures 8.9 and 8.10 show the contour lines when the

loss value is less than 50. In general, the loss function of Sensor 04 is non-convex, with

many local minimums. The loss function of Sensor 39 is much more convex. GD is not

guaranteed to converge to the global minimum [51], so it is challenging for GD to find the

global minimum of the non-convex loss function of Sensor 04. In contrast, NE is able to

escape local minimums, so it is better than GD for Sensor 04. For Sensor 39, which has a

convex loss function, GD is better than NE because GD can easily find the global minimum.

74

Figure 8.7 The loss surface of Sensor 04 Figure 8.8 The loss surface of Sensor 39

Figure 8.9 The contour-line visualization
for the loss surface of Sensor 04, in
which NE outperforms GD

Figure 8.10 The contour-line visualization
for Sensor 39’s loss surface, where
GD is better than NE

8.5 Discussion

We have introduced a new method for training neural networks using neuroevolution.

Our method outperforms gradient descent-based learning methods by up to 50% for the

traffic prediction task. We have also provided visualizations of the loss surfaces, which helps

us to understand why neuroevolution is better than gradient descent in some cases and vice

versa. Although our neuroevolution framework is highly scalable, our current settings for

the population size are still relatively small for the vast search spaces of training neural

networks. In the future, we plan to investigate the functionality of larger populations when

we have sufficient computing resources. Additionally, we are excited about the potential of

neuroevolution for training graph neural networks, which is an area of research that is still

under development.

75

CHAPTER 9

Discussion

In this thesis, we investigated various problems in reinforcement learning for traffic

signal control and public transit simulation. For TSC, we introduced TSLib, which is de-

signed to be modular and reusable, so that researchers can quickly implement and evaluate

new ideas in TSC. We also demonstrated the operation of TSLib by a benchmark on multiple

network scales. Subsequently, we proposed a novel method named WorldLight using world

models for automated feature engineering. WorldLight slightly outperformed the previous

methods in certain cases and showed its stability on various reward functions. Additionally,

we implemented RL-based TSCs on a digital twin of the smart corridor at Chattanooga,

TN, USA and proposeed a TSC system supporting lifelong assessment. The RL-based TSCs

improved average queue length, speed, travel time, and total fuel consumption by 22.23%,

6.34%, 4.29%, and 3.69%, compared to Actuated Controls. However, there is still a path

from digital twins to the real-world field that is need to be investigated. For example, there

are a few real-to-sim issues such as generalization, robustness of RL models, noisy features

extracted from real-time computer vision systems, and latency of communication.

Regarding to public transit simulation, we introduced SIMCal which is a high-performance

toolkit for calibrating traffic simulation. It is designed to help researchers and practition-

ers to quickly and easily calibrate traffic simulations. Additionally, we addressed a novel

simulation problem – how to efficiently conduct a new simulation where only the transit sys-

tem’s setting changes while the rest of the transportation system remains stable. However,

all experiments were conduct for Chattanooga only. The more extensive experiment across

multiple cities is necessary to improve the simulation procedure.

76

Finally, for training neural networks, we proposed a novel approach using Neuroevolu-

tion, which outperforms Gradient Descent methods by up to 50% on training loss. Although

our neuroevolution framework is highly scalable, our current settings for the population size

are still relatively small for the vast search spaces of training neural networks. In the fu-

ture, we plan to investigate the functionality of larger populations when we have sufficient

computing resources. Additionally, we are excited about the potential of neuroevolution for

training graph neural networks, which is an area of research that is still under development.

77

REFERENCES

[1] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flotterod, R. Hilbrich,
L. Lucken, J. Rummel, P. Wagner, and E. Wiessner, “Microscopic traffic simulation us-
ing sumo,” in 2018 21st International Conference on Intelligent Transportation Systems
(ITSC), 2018, pp. 2575–2582.

[2] H. Zhang, S. Feng, C. Liu, Y. Ding, Y. Zhu, Z. Zhou, W. Zhang, Y. Yu, H. Jin,
and Z. Li, “Cityflow: A multi-agent reinforcement learning environment for large scale
city traffic scenario,” in The World Wide Web Conference, ser. WWW ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 3620–3624. [Online].
Available: https://doi.org/10.1145/3308558.3314139

[3] D. Schrank, L. Albert, B. Eisele, and T. Lomax, 2021 Urban Mobility Report. Texas
A&M Transportation Institute, 2021.

[4] S. A. A. Shah, E. Ahmed, M. Imran, and S. Zeadally, “5g for vehicular communications,”
IEEE Communications Magazine, vol. 56, no. 1, pp. 111–117, 2018.

[5] E. van der Pol and F. A. Oliehoek, “Coordinated deep reinforcement learners for traffic
light control,” 2016.

[6] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement learning
approach for intelligent traffic light control,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, ser. KDD ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p. 2496–2505. [Online].
Available: https://doi.org/10.1145/3219819.3220096

[7] C. Chen, H. Wei, N. Xu, G. Zheng, M. Yang, Y. Xiong, K. Xu, and Zhenhui, “Toward a
thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal
control,” in AAAI, 2020.

[8] R. Sun, R. Gui, H. Neema, Y. Chen, J. Ugirumurera, J. Severino, P. Pugliese, A. Laszka,
and A. Dubey, “Transit-gym: A simulation and evaluation engine for analysis of
bus transit systems,” in 2021 IEEE International Conference on Smart Computing
(SMARTCOMP), 2021, pp. 69–76.

[9] R. Sen, A. K. Bharati, S. Khaleghian, M. Ghosal, M. Wilbur, T. Tran, P. Pugliese,
M. Sartipi, H. Neema, and A. Dubey, “E-transit-bench: Simulation platform for
analyzing electric public transit bus fleet operations,” in Proceedings of the Thirteenth
ACM International Conference on Future Energy Systems, ser. e-Energy ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p. 532–541. [Online].
Available: https://doi.org/10.1145/3538637.3539586

78

https://doi.org/10.1145/3308558.3314139
https://doi.org/10.1145/3219819.3220096
https://doi.org/10.1145/3538637.3539586

[10] K. Seyedmehdi, N. Himanshu, S. Mina, T. Toan, S. Rishav, and D. Abhishek, “Calibrat-
ing real-world city traffic simulation model based on vehicle speed data,” 2023 IEEE
International Conference on Smart Computing (SMARTCOMP), 2023.

[11] T. V. Tran, T.-N. Doan, and M. Sartipi, “Tslib: A unified traffic signal control frame-
work using deep reinforcement learning and benchmarking,” in 2021 IEEE International
Conference on Big Data (Big Data), 2021, pp. 1739–1747.

[12] C. Gershenson, “Self-organizing traffic lights,” Complex Systems, vol. 16, no. 1, 2004.

[13] P. Varaiya, “Max pressure control of a network of signalized intersections,”
Transportation Research Part C: Emerging Technologies, vol. 36, pp. 177–
195, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0968090X13001782

[14] S. Mousavi, M. Schukat, P. Corcoran, and E. Howley, “Traffic light control using deep
policy-gradient and value-function based reinforcement learning,” IET Intelligent Trans-
port Systems, vol. 11, 04 2017.

[15] X. Liang, X. Du, G. Wang, and Z. Han, “A deep reinforcement learning network for
traffic light cycle control,” IEEE Transactions on Vehicular Technology, vol. 68, no. 2,
pp. 1243–1253, 2019.

[16] U. D. of Transportation Federal Highway Administration. (2016) Next generation
simulation (ngsim) vehicle trajectories and supporting data. [Online]. Available:
http://doi.org/10.21949/1504477

[17] Z. J. Li. (2023) Open datasets on cityflow. [Online]. Available: https://
traffic-signal-control.github.io/dataset.html

[18] L. Codecà and J. Härri, “Monaco sumo traffic (most) scenario: A 3d mobility scenario
for cooperative its,” SUMO User Conference, Simulating Autonomous and Intermodal
Transport Systems, 2018.

[19] G. Zheng, X. Zang, N. Xu, H. Wei, Z. Yu, V. Gayah, K. Xu, and Z. Li, “Diagnosing
reinforcement learning for traffic signal control,” 2019.

[20] H. Wei, C. Chen, G. Zheng, K. Wu, V. Gayah, K. Xu, and Z. Li, “Presslight: Learning
max pressure control to coordinate traffic signals in arterial network,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, ser. KDD ’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 1290–1298. [Online]. Available: https://doi.org/10.1145/3292500.3330949

[21] J. Ault and G. Sharon, “Reinforcement learning benchmarks for traffic signal
control,” in Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021. [Online]. Available: https:
//openreview.net/forum?id=LqRSh6V0vR

[22] D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy evolution,” in Ad-
vances in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., 2018. [Online]. Available: https://
proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf

79

https://www.sciencedirect.com/science/article/pii/S0968090X13001782
https://www.sciencedirect.com/science/article/pii/S0968090X13001782
http://doi.org/10.21949/1504477
https://traffic-signal-control.github.io/dataset.html
https://traffic-signal-control.github.io/dataset.html
https://doi.org/10.1145/3292500.3330949
https://openreview.net/forum?id=LqRSh6V0vR
https://openreview.net/forum?id=LqRSh6V0vR
https://proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf

[23] D. R. Ha and J. Schmidhuber, “World models,” ArXiv, vol. abs/1803.10122, 2018.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” ArXiv, vol. abs/1707.06347, 2017.

[25] A. Harris, J. Stovall, and M. Sartipi, “Mlk smart corridor: An urban testbed for smart
city applications,” in 2019 IEEE International Conference on Big Data (Big Data),
2019, pp. 3506–3511.

[26] H. Wei, G. Zheng, V. Gayah, and Z. Li, “Recent advances in reinforcement
learning for traffic signal control: A survey of models and evaluation,” SIGKDD
Explor. Newsl., vol. 22, no. 2, p. 12–18, jan 2021. [Online]. Available:
https://doi.org/10.1145/3447556.3447565

[27] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Pro-
ceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ser. ICML’16. JMLR.org, 2016, p. 1928–1937.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-
level control through deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015.

[29] Z. Fang, F. Zhang, T. Wang, X. Lian, and M. Chen, “Monitorlight: Reinforcement
learning-based traffic signal control using mixed pressure monitoring,” in Proceedings
of the 31st ACM International Conference on Information & Knowledge Management
(CIKM), 2022.

[30] A. Saroj, T. V. Trant, A. Guin, M. Hunter, and M. Sartipi, “Optimizing traffic con-
trollers along the mlk smart corridor using reinforcement learning and digital twin,”
in 2022 IEEE 2nd International Conference on Digital Twins and Parallel Intelligence
(DTPI), 2022, pp. 1–2.

[31] A. Stevanovic, S. Alshayeb, and S. Patra, “Fuel consumption intersection control perfor-
mance index,” Transportation Research Record: Journal of the Transportation Research
Board, vol. 2675, 04 2021.

[32] T. V. Tran and M. Sartipi, “Single camera-enabled reinforcement learning traffic signal
control system supporting life-long assessment,” 2023 IEEE International Conference
on Smart Computing (SMARTCOMP), 2023.

[33] G. Jocher, A. Chaurasia, and J. Qiu, “Yolo by ultralytics,” 2023. [Online]. Available:
https://github.com/ultralytics/ultralytics

[34] T. V. Tran, S. Khaleghian, J. Zhao, and M. Sartipi, “Simcal: A high-performance toolkit
for calibrating traffic simulation,” in 2022 IEEE International Conference on Big Data
(Big Data), 2022, pp. 2895–2902.

[35] K. Sastry, D. Goldberg, and G. Kendall, Genetic Algorithms. Boston, MA: Springer
US, 2005, pp. 97–125.

80

https://doi.org/10.1145/3447556.3447565
https://github.com/ultralytics/ultralytics

[36] J. Kennedy, Particle Swarm Optimization. Boston, MA: Springer US, 2010, pp. 760–
766.

[37] X.-S. Yang, “Firefly algorithms for multimodal optimization,” in Stochastic Algorithms:
Foundations and Applications, O. Watanabe and T. Zeugmann, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 169–178.

[38] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, pp. 671–680, 1983.

[39] L. Li and X. M. Chen, “Vehicle headway modeling and its inferences in macroscop-
ic/microscopic traffic flow theory: A survey,” Transportation Research Part C: Emerging
Technologies, vol. 76, pp. 170–188, 2017.

[40] R. Sen, T. Tran, S. Khaleghian, P. Pugliese, M. Sartipi, H. Neema, and A. Dubey,
“Bte-sim: Fast simulation environment for public transportation,” in 2022 IEEE Inter-
national Conference on Big Data (Big Data), 2022, pp. 2886–2894.

[41] H. Nguyen, M. Kieu, T. Wen, and C. Cai, “Deep learning methods in transportation
domain: A review,” IET Intelligent Transport Systems, vol. 12, 07 2018.

[42] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT Press,
1998.

[43] T. Salimans, J. Ho, X. Chen, and I. Sutskever, “Evolution strategies as a scalable
alternative to reinforcement learning,” ArXiv, vol. abs/1703.03864, 2017.

[44] H. Mania, A. Guy, and B. Recht, “Simple random search of static linear policies is com-
petitive for reinforcement learning,” in Proceedings of Advances in Neural Information
Processing Systems (NeurIPS’ 18), 2018.

[45] N. Hansen, “The cma evolution strategy: A comparing review,” in Towards a New
Evolutionary Computation, 2006.

[46] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and J. Schmidhuber,
“Policy gradients with parameter-based exploration for control,” in Proceedings of the
18th International Conference on Artificial Neural Networks (ICANN), 2008.

[47] T. Choe, A. Skabardonis, and P. Varaiya, “Freeway performance measurement system:
Operational analysis tool,” Transportation Research Record, vol. 1811, no. 1, pp. 67–75,
2002.

[48] R. Fu, Z. Zhang, and L. Li, “Using lstm and gru neural network methods for traffic
flow prediction,” in Proceedings of 31st Youth Academic Annual Conference of Chinese
Association of Automation (YAC), 2016.

[49] O. Roeva, S. Fidanova, and M. Paprzycki, “Influence of the population size on the ge-
netic algorithm performance in case of cultivation process modelling,” in 2013 Federated
Conference on Computer Science and Information Systems, 2013, pp. 371–376.

[50] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape of
neural nets,” in Proceedings of Neural Information Processing Systems (NeurIPS’ 18),
2018.

81

[51] S. Ruder, “An overview of gradient descent optimization algorithms,” 2016. [Online].
Available: https://arxiv.org/abs/1609.04747

82

https://arxiv.org/abs/1609.04747

VITA

Toan Tran was born and grew up in Vietnam. He obtained a bachelor degree in

Computer Engineering at Ho Chi Minh City University of Technology. Currently, he is a

master student in Computer Science at University of Tennessee at Chattanooga. He has a

broad interest in data mining and its applications. After UTC, he continues his study at

Emory University.

83

	-.5ABSTRACT
	-.5ACKNOWLEDGMENTS
	-.5LIST OF TABLES
	-.5LIST OF FIGURES
	Introduction
	Traffic Signal Control
	Citywide transit simulation
	Thesis objectives

	I Reinforcement Learning for Traffic Signal Control
	TSLib: A Unified Traffic Signal Control Framework Using Deep Reinforcement Learning
	Brief Description of TSLib
	Interface
	Environment
	Controller

	Benchmarks
	Methods
	Experiments

	Pixel-based Traffic Signal Controls using Reinforcement Learning with World Models
	Proposed Methodology – WorldLight
	WorldLight's components
	Training WorldLight

	Experiments and Results
	Experiment setting
	Experiment 1: Overall performance
	Experiment 2: Effects of reward function
	Experiment 3: Effects of RL algorithms

	Optimizing MLK Traffic Controllers Using RL and Digital Twin
	Proposed framework
	Demonstration

	Single Camera-enabled RL-based TSC System supporting Life-long Assessment
	Proposed framework
	Demonstration
	Vehicle Detection System
	RL-based Traffic Signal Control

	II Citywide Public Transit Simulation
	SIMCal: A High-Performance Toolkit For Calibrating Traffic Simulation
	Brief Description of SIMCal
	SIMCal's framework
	Inputs
	Optimization
	Output and Visualization

	Experiments & Results
	Experiment setting
	Datasets
	Algorithm effects
	Population size effects
	Interval effects
	Traffic demand effects
	Network size effects

	BTE-Sim: Fast Simulation Environment For Public Transportation
	Brief Description of BTE-Sim
	Experiments and Results
	Exp 1: BTE-Sim using different sources for the historical edge-speed database
	Exp 2: BTE-Sim achieves competitive results compared to Transit-Gym
	Exp 3: BTE-Sim improves the simulation time
	Exp 4: BTE-Sim simulates different dates

	III Neuroevolution for Training Neural Networks
	Neuroevolution for transportation applications
	Training neural networks
	Training by Gradient Descent
	Neuroevolution approaches
	Experiments for Traffic prediction
	Discussion

	Discussion

	-.5REFERENCES
	VITA

